Placental microRNA Expression Is Not Altered by Maternal Obesity and Fetal Overgrowth
نویسندگان
چکیده
Objective The epigenetic mechanisms underlying fetal metabolic programming are poorly understood. We studied whether obesity is associated with alterations in placental miRNA expression. Study Design A cross-sectional study was performed, including (1) normal-weight women (BMI 20-24.9 kg/m2) and normal-birth-weight (BW) infants (2,700-3,500 g) (n = 20), (2) normal-weight and macrosomic infants (BW ≥ 4,000 g) (n = 10), (3) obese (BMI ≥ 35 kg/m2) and normal BW infants (n = 16), and (4) obese and macrosomic infants (n = 10). All had term deliveries (37-41 weeks) and normal glucose tolerance (1 hour GCT < 7.2 mmol/L [130 mg/dL]). The expression of 5,639 placental miRNAs was assessed using miRNA microarray. Differential miRNA expression was determined using two-way ANOVA and pairwise contrasts, with the Benjamini-Hochberg (BH) correction. MiRNAs with Z-scores ≥ 2 and false discovery rate (FDR) < 20% were considered significant. Results Principal components analysis demonstrated similar global miRNA expression profiles among groups. Of 5,639 miRNAs, only 5 were significantly different between obese and controls, which were not validated by quantitative polymerase reaction. Conclusion There was no difference in placental miRNA expression associated with obesity or overgrowth. Aberrant placental miRNA expression is an unlikely mechanism underlying fetal metabolic programming related to maternal obesity.
منابع مشابه
Activation of placental insulin and mTOR signaling in a mouse model of maternal obesity
22 Fetal overgrowth is common in obese women and is associated with perinatal complications and 23 increased risk for the child to develop metabolic syndrome later in life. Placental nutrient 24 transport capacity has been reported to be increased in obese women giving birth to large infants, 25 however the underlying mechanisms are not well established. Obesity in pregnancy is 26 characterized...
متن کاملIncreased placental nutrient transport in a novel mouse model of maternal obesity with fetal overgrowth
OBJECTIVE To identify possible mechanisms linking obesity in pregnancy to increased fetal adiposity and growth, a unique mouse model of maternal obesity associated with fetal overgrowth was developed, and the hypothesis that maternal obesity causes up-regulation of placental nutrient transporter expression and activity was tested. METHODS C57BL/6J female mice were fed a control (C) or a high-...
متن کاملHigh-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice.
Maternal overweight and obesity in pregnancy often result in fetal overgrowth, which increases the risk for the baby to develop metabolic syndrome later in life. However, the mechanisms underlying fetal overgrowth are not established. We developed a mouse model and hypothesized that a maternal high-fat (HF) diet causes up-regulation of placental nutrient transport, resulting in fetal overgrowth...
متن کاملPlacental transport and metabolism in fetal overgrowth -- a workshop report.
Fetal overgrowth in pregnancies complicated by diabetes is the result of an increased substrate availability which stimulates fetal insulin secretion and fetal growth. However, despite strict glycemic control in modern clinical management of the pregnant woman with diabetes, fetal overgrowth remains an important clinical problem. Recent studies in vivo provide evidence for increased delivery of...
متن کاملActivation of placental insulin and mTOR signaling in a mouse model of maternal obesity associated with fetal overgrowth.
Fetal overgrowth is common in obese women and is associated with perinatal complications and increased risk for the child to develop metabolic syndrome later in life. Placental nutrient transport capacity has been reported to be increased in obese women giving birth to large infants; however, the underlying mechanisms are not well established. Obesity in pregnancy is characterized by elevated m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016